涉及到的文件:
linux_source/kernel/power/main.c linux_source/kernel/power/earlysuspend.c linux_source/kernel/power/wakelock.c 特性介绍 Early Suspend Early suspend 是android 引进的一种机制, 这种机制在上游备受争议,这里 不做评论. 这个机制作用在关闭显示的时候, 在这个时候, 一些和显示有关的 设备, 比如LCD背光, 比如重力感应器, 触摸屏, 这些设备都会关掉, 但是系统可能还是在运行状态(这时候还有wake lock)进行任务的处理, 例如在扫描 SD卡上的文件等. 在嵌入式设备中, 背光是一个很大的电源消耗,所以 android会加入这样一种机制.Late Resume
Late Resume 是和suspend 配套的一种机制, 是在内核唤醒完毕开始执行的. 主要就是唤醒在Early Suspend的时候休眠的设备.Wake Lock
Wake Lock 在Android的电源管理系统中扮演一个核心的角色. Wake Lock是一种锁的机制, 只要有人拿着这个锁, 系统就无法进入休眠, 可以被用户态程序和内核获得. 这个锁可以是有超时的或者是没有超时的, 超时的锁会在时间过去以后自动解锁. 如果没有锁了或者超时了, 内核就会启动休眠的那套机制来进入休眠.Android Suspend
当用户写入mem 或者 standby到 /sys/power/state中的时候, state_store()会被调用, 然后Android会在这里调用 request_suspend_state() 而标准的Linux会在这里进入enter_state()这个函数. 如果请求的是休眠, 那么early_suspend这个workqueue就会被调用,并且进入early_suspend状态.void request_suspend_state(suspend_state_t new_state)
{
unsigned long irqflags;
int old_sleep;
spin_lock_irqsave(&state_lock, irqflags);
old_sleep = state & SUSPEND_REQUESTED;
if (debug_mask & DEBUG_USER_STATE) {
struct timespec ts;
struct rtc_time tm;
getnstimeofday(&ts);
rtc_time_to_tm(ts.tv_sec, &tm);
pr_info("request_suspend_state: %s (%d->%d) at %lld "
"(%d-d-d d:d:d. lu UTC)",
new_state != PM_SUSPEND_ON ? "sleep" : "wakeup",
requested_suspend_state, new_state,
ktime_to_ns(ktime_get()),
tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec, ts.tv_nsec);
}
if (!old_sleep && new_state != PM_SUSPEND_ON) {
state |= SUSPEND_REQUESTED;
queue_work(suspend_work_queue, &early_suspend_work);
} else if (old_sleep && new_state == PM_SUSPEND_ON) {
state &= ~SUSPEND_REQUESTED;
wake_lock(&main_wake_lock);
queue_work(suspend_work_queue, &late_resume_work);
}
requested_suspend_state = new_state;
spin_unlock_irqrestore(&state_lock, irqflags);
}
Early Suspend
在early_suspend()函数中, 首先会检查现在请求的状态还是否是suspend, 来防止suspend的请求会在这个时候取消掉(因为这个时候用户进程还在运行),如 果需要退出, 就简单的退出了. 如果没有, 这个函数就会把early suspend中 注册的一系列的回调都调用一次, 然后同步文件系统, 然后放弃掉 main_wake_lock, 这个wake lock是一个没有超时的锁,如果这个锁不释放, 那 么系统就无法进入休眠.static void early_suspend(struct work_struct *work)
{
struct early_suspend *pos;
unsigned long irqflags;
int abort = 0;
mutex_lock(&early_suspend_lock);
spin_lock_irqsave(&state_lock, irqflags);
if (state == SUSPEND_REQUESTED)
state |= SUSPENDED;
else
abort = 1;
spin_unlock_irqrestore(&state_lock, irqflags);
if (abort) {
if (debug_mask & DEBUG_SUSPEND)
pr_info("early_suspend: abort, state %d", state);
mutex_unlock(&early_suspend_lock);
goto abort;
}
if (debug_mask & DEBUG_SUSPEND)
pr_info("early_suspend: call handlers");
list_for_each_entry(pos, &early_suspend_handlers, link) {
if (pos->suspend != NULL)
pos->suspend(pos);
}
mutex_unlock(&early_suspend_lock);
if (debug_mask & DEBUG_SUSPEND)
pr_info("early_suspend: sync");
sys_sync();
abort:
spin_lock_irqsave(&state_lock, irqflags);
if (state == SUSPEND_REQUESTED_AND_SUSPENDED)
wake_unlock(&main_wake_lock);
spin_unlock_irqrestore(&state_lock, irqflags);
}
Late Resume
当所有的唤醒已经结束以后, 用户进程都已经开始运行了, 唤醒通常会是以下的几种原因:来电
如果是来电, 那么Modem会通过发送命令给rild来让rild通知WindowManager有来电响应,这样就会远程调用PowerManagerService来写"on" 到 /sys/power/state 来执行late resume的设备, 比如点亮屏幕等.用户按键用户按键事件会送到WindowManager中, WindowManager会处理这些 按键事件,按键分为几种情况, 如果案件不是唤醒键(能够唤醒系统的按键) 那么WindowManager会主动放弃wakeLock来使系统进入再次休眠, 如果按键是唤醒键,那么WindowManger就会调用PowerManagerService中的接口来执行 Late Resume.
Late Resume 会依次唤醒前面调用了Early Suspend的设备. static void late_resume(struct work_struct *work){
struct early_suspend *pos;
unsigned long irqflags;
int abort = 0;
mutex_lock(&early_suspend_lock);
spin_lock_irqsave(&state_lock, irqflags);
if (state == SUSPENDED)
state &= ~SUSPENDED;
else
abort = 1;
spin_unlock_irqrestore(&state_lock, irqflags);
if (abort) {
if (debug_mask & DEBUG_SUSPEND)
pr_info("late_resume: abort, state %d", state);
goto abort;
}
if (debug_mask & DEBUG_SUSPEND)
pr_info("late_resume: call handlers");
list_for_each_entry_reverse(pos, &early_suspend_handlers, link);
if (pos->resume != NULL)
pos->resume(pos);
if (debug_mask & DEBUG_SUSPEND)
pr_info("late_resume: done");
abort:
mutex_unlock(&early_suspend_lock);
}
Wake Lock
我们接下来看一看wake lock的机制是怎么运行和起作用的, 主要关注 wakelock.c文件就可以了.wake lock 有加锁和解锁两种状态, 加锁的方式有两种, 一种是永久的锁住, 这样的锁除非显示的放开, 是不会解锁的, 所以这种锁的使用是非常小心的. 第二种是超时锁, 这种锁会锁定系统唤醒一段时间, 如果这个时间过去了, 这个锁会自动解除.
锁有两种类型:
WAKE_LOCK_SUSPEND 这种锁会防止系统进入睡眠
WAKE_LOCK_IDLE 这种锁不会影响系统的休眠, 作用我不是很清楚. 在wake lock中, 会有3个地方让系统直接开始suspend(), 分别是:在wake_unlock()中, 如果发现解锁以后没有任何其他的wake lock了, 就开始休眠
在定时器都到时间以后, 定时器的回调函数会查看是否有其他的wake lock, 如果没有, 就在这里让系统进入睡眠. 在wake_lock() 中, 对一个wake lock加锁以后, 会再次检查一下有没有锁, 我想这里的检查是没有必要的, 更好的方法是使加锁的这个操作原子化, 而 不是繁冗的检查. 而且这样的检查也有可能漏掉. Suspend 当wake_lock 运行 suspend()以后, 在wakelock.c的suspend()函数会被调用,这个函数首先sync文件系统,然后调用pm_suspend(request_suspend_state),接下来pm_suspend()就会调用enter_state()来进入Linux的休眠流程..static void suspend(struct work_struct *work)
{
int ret;
int entry_event_num;
if (has_wake_lock(WAKE_LOCK_SUSPEND)) {
if (debug_mask & DEBUG_SUSPEND)
pr_info("suspend: abort suspend");
return;
}
entry_event_num = current_event_num;
sys_sync();
if (debug_mask & DEBUG_SUSPEND)
pr_info("suspend: enter suspend");
ret = pm_suspend(requested_suspend_state);
if (current_event_num == entry_event_num) {
wake_lock_timeout(&unknown_wakeup, HZ / 2);
}
}
Android于标准Linux休眠的区别
pm_suspend() 虽然会调用enter_state()来进入标准的Linux休眠流程,但是还 是有一些区别: 当进入冻结进程的时候, android首先会检查有没有wake lock,如果没有, 才会停止这些进程, 因为在开始suspend和冻结进程期间有可能有人申请了 wake lock,如果是这样, 冻结进程会被中断. 在suspend_late()中, 会最后检查一次有没有wake lock, 这有可能是某种快速申请wake lock,并且快速释放这个锁的进程导致的,如果有这种情况, 这里会返回错误, 整个suspend就会全部放弃.如果pm_suspend()成功了,LOG的输出可以通过在kernel cmd里面增加 "no_console_suspend" 来看到suspend和resume过程中的log输出。